

[This question paper contains 8 printed pages.]

Your Roll No.....

Sr. No. of Question Paper: 4379

G

Unique Paper Code

: 32341502

Name of the Paper

: Theory of Computation

Name of the Course

: B.Sc. (H) Computer Science

Semester

: V (Admissions 2019-2021)

Duration: 3 Hours

Maximum Marks: 75

Instructions for Candidates

 Write your Roll No. on the top immediately on receipt of this question paper.

Question No. 1 is compulsory.

3. Attempt any four of Question nos. 2 to 7.

4. Parts of a Question must be answered together.

5. Consider $\Sigma = \{a, b\}$ for all the questions unless specified otherwise.

- 1. (a) Let S = {ab, bb} and T = {ab, bb, bbbb}.
 - Is S* ⊂ T*?
 - Is S* = T*?

Explain.

(b) Write a regular expression for the language, having words with exactly one double letter in them.

(

- (c) Show that the language PRIME = {a^p, where p a prime} is non-regular.
- (d) Prove that the complement of a context-fr language may not be context-free.
- (e) (i) What are recursive languages?
 - (ii) State the Church-Turing thesis.

(f) For the following Finite Automata that accepts the language L, draw a deterministic FA that (4) accepts (i) L' (ii) L*

(g) Determine whether the following CFG is ambiguous or not. Justify.

$$S \rightarrow aSX \mid \Lambda$$

$$X \rightarrow aX \mid a$$

(h) Convert the following CFG to Chomsky Normal

Form:

E -> E + E

E -> E * E

$$E \rightarrow (E)$$

$$E -> 7$$

The terminals are
$$+$$
, $*$, $(,)$, 7 (4)

(i) Design a deterministic PDA for the following language: a^nb^{n+1} , n >= 1

(

(j) Design a deterministic finite automata that accept a string defined over the English alphabet {a-and ending with 'ied'. For instance, "died" wou be accepted, but not "dead".

Consider the following languages

L11: the language of all words that do not contain double a

L₁₂: the language of all words that do not contain double b and one in a

(a) Write a regular expression for each of L and L_{12} . Hence write a regular expression f $L_{11} \cup L_{12}$.

- (b) Draw a finite automata for each of L₁₁ and L₁₂.
 Hence, systematically find a finite automata for L₁₁ ∩ L₁₂.
 (6)
- (a) Convert the following non-deterministic finite automata to deterministic finite automata: (4)

- (b) Design a Turing Machine that decides the language $L = \{a^nb^nc^{n+2}: n \ge 0\}.$
- (a) Find a CFG for the language C₄ = a(bb)*. Also, find a CFG for L₄*.
 - (b) Construct a deterministic PDA for the language L given below:

$$L = \{a^m b^n \mid n >= 1, m >= 1, m > n+2\}$$
 (6)

(a) (i) Convert the following Transition graph in regular expression:

(ii) Construct a TG for L* if L is defined by following TG:

(b) Show that the following language defined over alphabet {a, b} is not context free:

anbnanbn

- (a) Build a finite automata that accepts the language of words having a double letter in them.
 - (b) Prove that recursively enumerable languages are not closed under complementation. (4)
 - (c) What would be the length of the shortest string in the language mentioned in part (a) above? List the shortest strings.
 (2)
- (a) Describe the language accepted by the following PDA and give its regular expression. (4)

(b) Consider the following CFG:

S -> aAS, S -> a, A -> SbA, A -> SS, A -> ba

For the input string 'aabbaa', find

(i) leftmost derivation

dominated from State (6)

(1000)